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1. Abstract 
 
The majority consensus model introduced in this paper (“Proof of Majority”), addresses the latency 
issues, centralization issues, and non-democratized qualities of the prevailing blockchain 
technologies, particularly those underlying the cryptocurrencies, available as of the time of the writing 
of this paper. Current Proof of Work, Proof of Stake, and Proof of Authority consensus models and 
any consensus models that rely on the selection of a single node to produce, and ultimately extend 
for validation, a block during a blockchain epoch are not useful in real world applications that require 
low latency processing and small footprint processing power. Further, these consensus models don’t 
meet their stated requirements of decentralization and democratization. Instead, they fall far short 
of their original intents. In each model, a single node is selected via some mechanism, whether by 
“lottery” as with Proof of Work, by random selection among the largest coin holders as with Proof of 
Stake, or by random selection among nodes deemed worthy by a centralized decision-making body, 
as with Proof of Authority. Regardless of how the single node is selected, the single node becomes a 
defacto-authority voting for the entire network. This is not democratization. Additionally, and 
although unintended, each of these models is ultimately run by a defacto-central authority and not 
by the network as a set of decentralized nodes. Due to the arbitrarily difficult work required to be 
performed to “prove” that the block generated by the single selected node is worthy of network wide 
validation, massive processing power is required. Thus, a small group of large pools of processing 
power have risen to the status of defacto-authorities in the case of Proof of Work based blockchains. 
Proof of Stake is by its very nature designed to concentrate power in the hands of a few based on 
their wealth, and Proof of Authority leaves the decision of which entities can operate nodes in the 
network to a central vetting authority. Thus, each of these models has fallen short of their stated 
requirements.   
   
The Proof of Majority consensus model delivers a decentralized and democratized blockchain with 
low latency, low processing power requirements, low network traffic, low network energy, frictionless 
and guaranteed transaction processing, attack vector mitigation, and mining rewards.  
 
During a given epoch, all nodes in the network are responsible for building their "version" of a block 
containing all the current unconfirmed transactions. No node is required to perform arbitrary hashing 
work in order to be selected as the dominant miner; who is ultimately allowed to present its block for 
validation to the rest of the network through costly network gossiping protocols involving large 
amounts of information. Instead, all nodes generate a block, whose hash they pass, only, to each of 
their connected peers. The hashes are then validated and compared to determine a majority 
consensus within the connected peer group. Once each node arrives at a majority decision within its 
peer group, the node adds the block to its understanding of the network wide blockchain. Because all 
the nodes are building their "version" of the block, which can be validated and compared to other 
blocks within the node's directly connected peer group, all nodes must start with the same set of 
transactions. This is done by propagating the unconfirmed transaction lists through the network to 
converge on the longest list that will fit into a block. A consensus of which transactions to include is 
arrived at before a block consensus is arrived at. All validated transactions are included; none are 
skipped or ignored simply because the associated fee is not interesting to miners. Nodes do not place 
a "coinbase" transaction into the block they are building; no dilution of coin value through mining is 
allowed. Doing so will doom the entire block constructed by the node to later be deemed by its peers 
as a "minority" block and it will be eliminated. Additionally, there is no need for senders to allocate a 
fee in their transaction request, as these types of incentives are ignored by nodes building blocks. All 
transactions are included in block building without fees. 
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In the Proof of Work consensus model, arbitrary workloads at each node in the network, cause huge 
prolonged levels of network energy. Regardless of who wins the "lottery" and is "allowed" to submit 
their block for validation, the entire network was attempting to win and thus there is a network wide 
rise in energy consumption. In contrast, in the Proof of Majority consensus model, network energy 
remains ultra-low. Nodes are simply compiling a block of transactions and doing very little hashing 
work; work that is done in milliseconds, not minutes. Thus, nodes in the Proof of Majority network 
can be very light weight with an extremely low processing footprint and a very small memory 
footprint. Data movements are never much larger than the size of a block and movement frequency 
is naturally throttled by transaction list formation and consensus building activities on each node. 
Hardware running nodes can be a fraction of the processing power required to run nodes in a Proof 
of Work consensus model. The Proof of Majority nodes can run on handheld devices; smart phones 
have the necessary processing power, memory, and bandwidth. 
 

2. Honest Nodes 
 
As with all decentralized and democratized network computers, honest nodes must outnumber 
dishonest nodes to maintain the probability that the distributed computer will not be compromised. 
A fully connected peer-to-peer network is the ideal way to mitigate the impact of dishonest nodes in 
this type of computer. Unfortunately, network packet delivery issues, node processing and memory 
limits, and latency issues, prevent the ideal network at scale. Typical world-wide networks of this 
nature will on average have peer groups of 8-10 nodes; this is generally a defensible number from a 
probability standpoint. At their infancy, however, these types of networks will have less nodes in a 
peer group and there will be less peer groups, making them particularly vulnerable to dishonest nodes 
and other attack vectors during this time. In any network state, honest nodes follow the rules and 
create an orderly path to solving the problem at hand. When the problem at hand is generating valid 
blocks, and adding them to the valid blockchain as understood by the network at large, the more 
connected direct peers a node has and the larger the overall node network is, the more likely the 
computer can survive dishonest nodes; invalid forks are more quickly abandoned, and thus dishonest 
nodes have to work harder and there needs to more of them. However, since the network isn't always 
privy to which nodes are dishonest, even honest nodes have to be throttled to ensure that their data 
is not corrupted by a dishonest node and introduced into the network as valid data. To do this, the 
Proof of Majority consensus model "timelocks" the first node in each peer group to come up with a 
valid block; effectively ignoring the node's block generations in the consensus for a certain number of 
blocks. As a result, at any given moment, a small portion of the network's honest nodes are being 
ignored, but at the advantage of mitigating honest node corruption by dishonest nodes' injection of 
data that, though validates, does not meet the majority consensus; invalid forks are abandoned very 
quickly in this model. 
 

3. Dishonest Nodes 
 
Decentralized and democratized network computers are open to many attack vectors; denial of 
service, Sybil attacks, packet sniffing, forcing clock drift attacks, security vulnerabilities, and the like. 
But the most destructive attack vector is the dissemination of illegal information by seemingly honest 
contributors; information that though can be validated is nevertheless erroneous. Dishonest nodes 
attack peer groups, intending to infiltrate the peer group and get the block they generate into the 
blockchain. Because the majority of blocks given to a node by its connected active peers must be valid 
and must match before a majority consensus is arrived at, dishonest nodes would have to control the 
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peer group to affect a negative outcome. Fortunately, peer groups are not isolated islands in the 
network, they themselves are connected to other peer groups and so on. This makes the problem of 
the dishonest node statistically more difficult. So dishonest nodes would ultimately have to 
overwhelm the network in terms of numbers to sway a network wide majority decision model. 
Unfortunately, with today’s computing resources, this is not completely unattainable. So, more 
precautions have to be taken. Proof of Work does a good job of mitigating this attach vector through 
its "lottery" system of node selection, forcing dishonest nodes to not only outnumber the honest 
nodes, but to be able to perform more work than the collective pool of honest nodes. Proof of Majority 
mitigates this risk, by "blacklisting" any node whose block does not match the other blocks being 
evaluated by any given node. This also means that any honest node that has been overwhelmed by 
dishonest nodes will soon be "blacklisted" by the network, thereby, mitigating the risk of dishonest 
nodes creating forks that aren't quickly abandoned. "Blacklisting" is a great tactic, but with one glaring 
fault; dishonest nodes simply have to work to get the majority of the honest nodes "blacklisted". To 
prevent this, the Proof of Majority model allows nodes to come off the "blacklist" after a certain 
number of blocks have been created; statistically significant time to abandoned corrupt forks, while 
allowing honest nodes to re-enter the work force. 
 

4. Wallets and Addresses 
 
Proof of Majority uses elliptic curve cryptography to ensure confidentiality, authenticity, and non-
repudiability of all transactions originated within wallets. Each wallet is a private/public Ed25519. 
Wallets are identified by addresses, which are derived in part from one-way mutations of Ed25519 
public keys. 

 
4.1 Wallet Address 

 
A wallet address is a base-323 encoded triplet consisting of; (1) network byte, (2) 160-bit hash 
of the wallet’s public key, and (3) 4 byte checksum to allow for quick recognition of mistyped 
addresses.  
 

4.2 Generating an Address 
 
To convert a public key into a wallet address, the following steps are performed: 
 
01. Perform 256-bit Sha3 on the public key 
02. Perform 160-bit Ripemd of hash resulting from step 01. 
03. Prepend version byte to Ripemd hash (either 0x68 or 0x98) 
04. Perform 256-bit Sha3 on the result, take the first four bytes as a checksum 
05. Concatenate output of step 03 and the checksum from step 04 
06. Encode result using base32 

 
5. Cryptography 

 
Proof of Majority requires the use of cryptography in all aspects of internode communications and is 
based on Elliptic Curve Cryptography using the Twisted Edwards Curve to help ensure security, speed, 
and low processing requirements, as follows: 
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−𝑥ଶ  +  𝑦ଶ  =  1 −  
121665

121666
𝑥ଶ𝑦ଶ 

 
over the finite field defined by the prime number 2ଶଶହ –  19 together with the digital signature 
algorithm called Ed25519 [1]. The base point for the corresponding group 𝐺 is called 𝐵. The group has 
𝑞 =  2ଶହଶ –  27742317777372353535851937790883648493 elements. Every group element 𝐴 
can be encoded into a 256-bit integer 𝐴 which can also be interpreted as 256-bit string and 𝐴 can 
be decoded to receive 𝐴 again. 
 
For strict hashing, the consensus mode uses the 512-bit SHA3 hash function. 

 
5.1 Encrypted Message Traffic 

 
Node communications in the clear is just an open door to many attack vectors. This consensus 
model dictates that nodes communicate using only encrypted messages. Virtually all 
encryption algorithms are subject to breakage, but the pool of bad actors capable of launching 
attacks is significantly reduced. Rotating keys and node identification protocols further reduce 
that pool. Elliptic Curve Cryptography is compact and fast and won't significantly add to the 
node footprint or to node latency. Key security is a major factor in the successful use of 
encryption. Proof of Majority provides solutions for key protection and node identification to 
mitigate spoofing and virus/worm activities that steal keys. Solutions are also in place to 
mitigate replay attacks. Peer connection attempts must use the proper encryption and 
handshake protocols to successfully join a peer group. Because, nothing can completely 
eliminate these kinds of risk in a distributed computer, this consensus model employs 
strategies to reduce the pool of bad actors capable of launching attacks; message encryption 
is a key strategy. 

 
6. Transactions 

 
Wallet states can only be effected through transactions confirmed onto the blockchain. Wallet owners 
create transactions and send them to their connected nodes. These transactions are known as 
unconfirmed transactions. Unconfirmed transactions are processed by the network of nodes for no 
fee; consensus is frictionless. State migration from unconfirmed to confirmed for a given transaction 
can only be accomplished through a majority consensus of the entire network of nodes and is 
represented by the election of a new block containing the given transaction. 
 
When a wallet creates a new transaction, the transaction is broadcast to all connected active peers. 
The receiving nodes validate the transaction and, if valid, the nodes place the transaction into their 
unconfirmedtransactions queue. At the next epoch, the node then gossips the transaction to the 
network at large via the transaction propagation protocol. Prior to processing unconfirmed validated 
transactions into a block, the network establishes a complete list through the transaction balloting 
protocol to ensure that the network has converged. 
 

7. Node Processing 
 
The blockchain represents the entire state of the network of nodes at any given point in time. Blocks 
on the blockchain represent a consensus among the nodes in the network reflecting a network wide 
accepted statement about the state of the network at the time the block was added to the blockchain. 
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In any consensus model operating in a decentralized network, one or more nodes on the network 
assert a statement or statements about the state of the network to other nodes for consideration by 
those other nodes as to the accuracy of that statement or statements. In the Proof of Majority 
consensus model, all nodes are asserting one statement each about the state of the network, at that 
time, in the form a block. 
 
Thus, the primary purpose of a node is to arrive at a representation of the state of the network that 
is accurate. It must do this without knowledge of the entire network and in a decentralized manner, 
while mitigating attack vectors, particularly bad actors – i.e., dishonest nodes.  
 
Nodes must first become an integral part of the network, discovering other nodes and then 
establishing vectors of communications with those nodes. Nodes are not required to establish 
communication vectors with all other nodes, to avoid unnecessary network traffic and heightened 
network wide energy levels. Instead, nodes form or join groups that are connected to other groups 
through nodes common to the groups. In doing so, a network is established. As new nodes enter the 
network, node peering becomes more resilient and more resistant to attack vectors. In the Proof of 
Majority consensus model, all nodes participate in forming the consensus of the network state. 

 
7.1 Peer Sampling 

 
Every node in the network requires peers to connect to for the purposes of exchanging 
messages about the state of the network. However, every node does not have to exchange 
messages with every other node in the network to have the probability of complete 
information sharing among nodes approach 1. In practice, it is not feasible for every node to 
exchange message with every other node in a large network, where nodes regularly join and 
leave the network, either purposefully or because of failure, and where the network suffers 
from broken or slow links, as is the case in a truly decentralized network, where independent 
operators maintain nodes. Instead, it has been shown that nodes should exchange messages 
with peers that are selected following a uniform random sample of all nodes currently in the 
network [2][3]. Based on this assumption, it is possible to achieve high levels of scalability, 
reliability, and efficiency. However, enforcing a network wide uniform random sampling of all 
nodes requires that every node knows every other node in the network [4]. This is an 
unrealistic goal due to the considerable synchronization costs that would otherwise be 
incurred in a decentralized peer-to-peer network where individual nodes are often connected 
for only a few minutes to an hour (high churn rates), as various measurement studies show 
[5][6]. Instead, it has been shown that using the gossip paradigm, nodes can construct, and 
refresh, at each epoch, a random sampling of peers, sufficient to create a probability of 
complete information sharing among nodes that approaches 1, from a localized partial view 
of the complete set of network nodes, without having to know the complete set of network 
nodes [7]. 
 
In the Proof of Majority consensus model, an efficient peer sampling protocol is crucial to 
staging and conducting the consensus mechanism’s supporting protocols. The goal of the peer 
sampling protocol is to provide each node with a random subset of peers from the peer 
groups it is connected to directly or indirectly. Each node in the network will construct and 
maintain entries in a randompeers queue, such that the queue contains one and only one 
descriptor for each peer node contained in the queue. Each descriptor contains a network 
address for the peer node and an age that represents the freshness of the given node 
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descriptor. The queue must maintain a number of node descriptors (𝑐), such that 𝑐 ∶
 𝑂(𝑙𝑜𝑔 𝑉) where 𝑉 is the number of connected nodes in the network [8][7], to be an effective 
base to the gossip protocols used in other node protocols. If this is the network start or node 
start then each node sets its randompeers queue to its set of connected active peers and 
initializes their age to zero.  
 
To continually reflect the dynamics of the network, peer sampling is assumed to be executed 
only once per epoch, by each node 𝑛,  using the following schemas centered on a push/pull 
approach: 

   
Node 𝑛 performs a single randompeers queue exchange with a peer 𝑝 during an 
epoch: 
 
01. Select 𝑝 as the highest aged descriptor in the randompeers queue that 

represents an active peer and that is not in the suspectednode queue 
02. Package a buffer 𝑏 as follows: 

a. Add descriptor for node 𝑛 to 𝑏 
b. Shuffle the randompeers queue and move the highest aged descriptor to 

the end of the randompeers queue 
c. Append the first 𝑐/2 − 1 descriptors in the randompeers queue to 𝑏 

03. Send 𝑏 to 𝑝 and set answer flag 𝑓 to 0 for 𝑝 
04. Increase the age component of each descriptor in the randompeers queue by 1 
  
    
Node 𝑛 is receiving a buffer 𝑏ଵ from another node 𝑝: 

 
01. If 𝑝 is not in the suspectednode queue, then  

a. If 𝑓 is set to 1, then 
i. Package a buffer 𝑏ଶ as follows: 

1. Add descriptor for node 𝑛 to 𝑏ଶ 
2. Shuffle the randompeers queue and move the highest aged 

descriptor to the end of the randompeers queue 
3. Append the first 𝑐/2 − 1 descriptors in the randompeers 

queue to 𝑏ଶ 
ii. Send 𝑏ଶ to 𝑝 

b. Update the randompeers queue, as follows: 
i. Append 𝑏ଵ to the randompeers queue 

ii. Remove duplicates from the randompeers queue 
iii. Remove the highest aged descriptor from the randompeers queue 
iv. Remove the first min(𝑐/2, randompeers queue length – 𝑐) 

descriptors from the randompeers queue 
v. Remove at random (randompeers queue length – 𝑐) descriptors from 

the randompeers queue 
c. Increase the age component of each descriptor in the randompeers queue 

by 1 
d. Set answer flag 𝑓 to 1 for 𝑝 
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By employing the two schemas above, nodes can reliably and efficiently refresh their sampling 
of localized peers to maintain a sufficiently randomized queue suitable for use in other node 
gossip based protocols. The peer sampling protocol ensures local randomness from each 
node’s point of view and provides every node with local knowledge of the rest of system, 
which is the cornerstone to a network convergence of global properties using only local 
information [7]. Average path length is close to that characteristic of random graphs and there 
is high resilience to fault tolerance, particularly to high churn rates [7]. This protocol creates 
the opportunity for other node gossip based protocols to completely spread information 
across the network with a probability approaching 1 – i.e., the network converges. For this 
consensus model, 𝑐 is set to 32, to affect a probability approaching 1 of saturating 
4,294,899,255 nodes with information during gossip based protocols. 
   
Since, the randompeers queue is updated only once per epoch and accepts a related 
information exchange from connected active peers only once per epoch, the problem of 
dishonest nodes controlling any given node’s randompeers queue is mitigated. In the unlikely 
case, that two honest nodes collide, choosing each other to exchange peer information with, 
the node that receives the message first, ceases outbound information exchange during the 
peer sampling protocol. 

 
7.2 Transaction Propagation 

 
Rather than allowing nodes to determine which unconfirmed validated transactions are 
processed into a block, Proof of Majority mandates that each transaction, that is properly 
propagated and that can be validated, be processed into the nearest block possible. 
Transaction processing should be virtually guaranteed, mitigated only by catastrophic 
network failures, not dishonest nodes or other attack vectors. Crucial to approaching a 
guaranteed transaction processing system within the network, are protocols that can virtually 
ensure transaction propagation to all nodes.  
 
Actual use of these protocols by nodes in the network is also crucial. The preponderance of 
current miner based systems do not have enough incentives for nodes to forward information 
at all, in their respective networks, because it is in the best interests of miners to hold on to 
transactions that include fees and claim those fees by eventually creating a block that includes 
the respective transactions [9]. Transaction processing should be devoid of fees to the parties 
involved in any given transaction, to incent usage of the system and to reduce system wide 
friction. The question of how nodes are incented to participate fully is addressed later in this 
paper. 
 
A transaction balloting protocol is employed to ensure that prior to block generation, within 
an epoch, all nodes in the network are working with the same set of unconfirmed validated 
transactions in an ordered manner, with a certainty probability approaching 1. The peer 
sampling protocol is employed, within an epoch, to support the transaction propagation 
protocol and the transaction balloting protocol, among others. The peer sampling protocol is 
designed to keep the randompeers queue fresh and with sufficient peer descriptors to be 
suitable for random peer gossiping. Transaction propagation is handled primary through 
random peer gossiping. 
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Each node in the network will maintain entries in a unconfirmedtransactions queue, such that 
the queue contains one and only one descriptor for a given unconfirmed and validated 
transaction. The unconfirmedtransactions queue is populated through random peer 
gossiping, initiated first by the wallet node that created the transaction. Starting with the 
wallet node 𝑛, unconfirmed validated transactions are propagated, regardless of other 
processing being done by the node in a given epoch, using the following schemas centered on 
a push approach: 

 
Node 𝑛 performs a single transaction 𝑡 unidirectional exchange with 𝑑 peers 𝑝 as 
unconfirmed transactions are validated: 
 
01. Select 𝑝 as the 𝑑 highest aged descriptors in the randompeers queue that 

represent active peers and that are not in the suspectednode queue 
02. Package a buffer 𝑏 with 𝑡 
03. Send 𝑏 to 𝑝 
    
 
Node 𝑛 is receiving a buffer 𝑏 containing transaction 𝑡 from another node 𝑝: 

 
01. If 𝑝 is not in the suspectednode queue, then 

a. If 𝑡 is invalid, then add 𝑝 to the suspectednode queue 
b. If 𝑝 is not in the suspectednode queue, then  

i. If 𝑡 is valid and does not exist in the unconfirmedtransactions queue 
for 𝑛, then 

1. Update the unconfirmedtransactions queue with 𝑡 
2. Perform a unidirectional exchange of 𝑡 with 𝑑 peers 𝑝, as 

follows: 
a. Select 𝑝 as the 𝑑 highest aged descriptors in the 

randompeers queue that represent active peers and 
that are not in the suspectednode queue 

b. Package a buffer 𝑏 with 𝑡 
c. Send 𝑏 to 𝑝 

 
It is not crucial that the network become saturated with a given unconfirmed validated 
transaction nor is it crucial to accommodate nodes entering the network post transaction 
propagation. Instead, transaction balloting will attempt to saturate the network prior to block 
creation. The goal of the transaction propagation protocol is only to mitigate the risk of a 
given transaction being lost or dropped by the network due to high churn rates common to 
decentralized peer-to-peer networks, where individual nodes are often connected for only a 
few minutes to an hour [5][6].  
  
Consider the fifteen nodes in Figure 1, where the wallet node 𝜐ଵ is asserting a transaction that 
will ultimately require the network at large to consider it for inclusion in a block during the 
transaction balloting protocol in the next epoch. Lines represent peer-to-peer connections in 
the network, through which messages reflecting the node’s transaction are gossiped to other 
nodes in the network, devoid of any requirement to saturate the network. Instead, only nodes 
{𝜐ଵ, . . . , 𝜐ଵହ} receive the transaction information.  
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Figure 1. Wallet node 𝜐ଵ gossips the transaction to nodes {𝜐ଵ, . . . , 𝜐ଵହ} 
 
In practice, prior to nodes undertaking the transaction balloting protocol, the network must 
maintain an understanding of the transaction gossiped by node 𝜐ଵ in such a way that as the 
network experiences node churn, the transaction information will not be lost. Figure 2 reflects 
a network state, post the gossiping of the transaction information, where nodes 
{𝜐ଵ, 𝜐ଶ, 𝜐ଷ, 𝜐ସ, 𝜐଻, 𝜐଼, 𝜐ଽ, 𝜐ଵହ} have exited the network and where nodes {𝜐ହ, 𝜐଺} are dishonest 
– i.e., many nodes with an understanding of the transaction have effectively lost the 
transaction information and, therefore, cannot propagate that information at the next epoch 
during the transaction balloting protocol. However, the transaction information is not lost 
and will still be propagated. 
 

 
Figure 2. Nodes {𝜐ହ, 𝜐଺} are dishonest, while others have exited, but the transaction persists 
 
By requiring that the 𝑑 highest aged peers, where 𝑑 is set to 15, be pushed the transaction 
being propagated, the probability of the transaction reaching 32,758 nodes in the network 
approaches 1. At the time of this writing, the largest public blockchain averages approximately 
10,000 active nodes – i.e., by setting 𝑑 to 15, the probability of saturation would approach 1, 
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even though it is not required by the Proof of Majority consensus mode. To manage smaller 
or larger networks more efficiently, the value of 𝑑 can be adjusted without causing hard forks 
in the blockchain. Whatever the value of 𝑑, the goal is to propagate the transaction to as many 
nodes as necessary to mitigate transactions loss due to high churn rates and to mitigate 
certain attack vectors, particularly that of dishonest nodes colluding to control a majority of 
the network. 
 
In the case, that two honest nodes collide, choosing each other to exchange transaction 
information with, the node that receives the message first, ceases outbound information 
exchange during the transaction propagation protocol. 

 
7.3 Transaction Balloting 

 
Forming a network wide consensus about the state of the network first means forming 
statements that are to be considered for accuracy by the rest of the network. These 
statements take the form of blocks composed of unconfirmed transactions. Nodes in the 
network receive unconfirmed transactions through the gossip protocols, but all nodes are not 
guaranteed to have received all unconfirmed transactions. Further, even if all nodes were 
guaranteed to receive all unconfirmed transactions through the gossip protocol, nodes would 
still need to agree on which transactions possibly represent the current state of the network 
and then broadcast possible states, as blocks, for consideration by the network for inclusion 
in the blockchain. Therefore, a protocol for forming this set of unconfirmed transactions is 
required – i.e., a protocol for forming a ballot of unconfirmed transactions that permeates 
nodes, network wide. 
 
Transaction balloting is essentially information synchronization of all unconfirmed 
transactions previously gossiped to network nodes that meet certain criteria. All unconfirmed 
validated transactions are handled by all nodes; no discrimination is allowed. A network wide 
ballot is constructed through peer-to-peer communications, sized to allow the underlying 
unconfirmed validated transactions to all fit into the next block being created. Unconfirmed 
validated transactions outside the space limitations of the block are stored by the nodes, in 
their unconfirmedtransactions queues, for inclusion in the next block. Unconfirmed 
transactions are validated and ordered by time stamp for inclusion in each ballot submission 
endorsed by each node and propagated to node peers. 
 
The primary task of each node, at this stage of an epoch, is to arrive at an ordered universal 
set of unconfirmed transactions based on the transaction ballots endorsed by its peer nodes. 
An iterative process of peer based universal set building is employed. Nodes propagate ballots 
to connected peers, starting with a ballot derived from their then current understanding of 
the universe of unconfirmed validated transactions. Nodes receive ballots from connected 
peers and add to their universal set those transactions on these ballots that are not on its own 
ballot. The ballot is ordered at each universal set augmentation. The new universal set ballot 
is then propagated again and again and the node updates its universal set ballot from the 
ballots received from connected peers. Nodes continue this iterative process for a determined 
set of iterations, known as a cycle. At the conclusion of the cycle, the node is satisfied that it 
has an ordered set of all unconfirmed validated transactions synchronized with the rest of the 
network. Characterized more formally: 
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Definition (token). A token is the hash of a known unconfirmed validated transaction at any 
given node that predates the beginning of the current epoch. 
 
Definition (node ballot). A node ballot is the ordered universal set ξ of all tokens known to a 
node and those tokens subsequently added via connected node endorsement from a set of 
connected nodes 𝑉 such that ξ →  ξ ∪  2௏. 
 
Definition (lower bound). A lower bound on the number of iterations needed for the 
deterministic data forwarding algorithm to disseminate a token in a dynamic network 
topography, exists and be calculated for the set of connected nodes 𝑁 in the network as 
Ο(log 𝑁) [8][7]. 
 
Definition (cycle). A cycle is the number of iterations of internode token dissemination equal 
to the lower bound, in which each node selects from its randompeer queue, the active peer 
with the highest age, that has not yet been selected during the cycle, to affect a bidirectional 
exchange of node ballots where each node derives a localized ordered universal set of 
unconfirmed validated transactions – i.e., where the localized universal set 𝑈 is derived such 
that ∀𝜐 ⊆ 𝑈 𝑎𝑛𝑑 𝑈 ⊇ ∀𝜐. 
 
Because the lower bound may be larger than the size randompeers queue, due to the peer 
sampling protocol being unable to secure the requisite number of random peers or that there 
are not enough active peers at the time of processing, it is possible for the node to exhaust 
the randompeers queue, using the method of selecting the previously unselected highest 
aged active peer, before the cycle concludes. If this occurs, the node will select random entries 
from randompeers queue to manage the remaining iterations in the cycle. 
 
Since block creation occurs only once per epoch, transaction balloting is assumed to be 
executed only once per epoch, by each node 𝑛,  using the following schemas centered on a 
push/pull approach: 
 

Once per epoch, node 𝑛 performs a cycle of node ballot exchanges with connected peers 
𝑝 derived from the randompeers queue, such that the number of exchanges is equal to 
the lower bound: 

 
01. If a new node ballot for the epoch does not exist, then create a node ballot from 

known tokens 
02. Select 𝑝 as the highest aged descriptor in the randompeers queue, that has not 

been previously selected in this cycle, that represents a active peer, and that is 
not in the suspectednode queue 

03. Package a buffer 𝑏 with the node ballot  
04. Send 𝑏 to 𝑝 and set answer flag 𝑓 to 0 for 𝑝 

 
    
Node 𝑛 is receiving a buffer 𝑏ଵ from another node 𝑝: 

 
01. If a new node ballot for the epoch does not exist, then create a node ballot from 

known tokens 
02. If 𝑝 is not in the suspectednode queue, then 
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a. If 𝑓 is set to 1 for 𝑝, then 
i. Package a buffer 𝑏ଶ with the node ballot 

ii. Send 𝑏ଶ to 𝑝 
b. Update the node ballot, as follows: 

i. For each hash ℎ in 𝑏ଵ process as follows: 
1. If ℎ is not contained in node ballot, then retrieve transaction 

𝑡 represented by ℎ from 𝑝 
2. If 𝑡 cannot be retrieved or 𝑡 is invalid, then add 𝑝 to the 

suspectednode queue 
ii. If 𝑝 is not in the suspectednode queue, then 

1. Append 𝑏ଵ to the node ballot 
2. Remove duplicates from the node ballot 
3. Order the node ballot 

03. Set answer flag 𝑓 to 1 for 𝑝 
 

At the conclusion of the cycle, the probability approaches 1 that there exists a single ballot of 
transactions network wide. Any nodes that have a transaction ballot, that is not synchronized 
with the network, will start the block building protocol with an invalid ballot – i.e., the node’s 
ballot will not equal ξ. Thus, the node will create an invalid block that will be ultimately not 
be accepted during the majority consensus protocol phase of network wide processing. As an 
inverse to probability approaching 1 that there is a single network wide transaction ballot (ξ), 
the probability of a node having a transaction ballot different that is different than ξ 
approaches zero. Therefore, the effects of the resultant invalid blocks on the network wide 
consensus will, also, approach zero. 
 
Consider the network in Figure 3 that reflects the network state, just after the first round of 
internode information exchanges during the transaction balloting protocol, assuming the 
starting state was of the network was that attained post propagation of transaction 
information from the wallet node 𝜐ଵ, where nodes {𝜐ଵ, 𝜐ଶ, 𝜐ଷ, 𝜐ସ, 𝜐଻, 𝜐଼, 𝜐ଽ, 𝜐ଵହ} have exited 
the network and where nodes {𝜐ହ, 𝜐଺} are dishonest and, therefore, it can be expected that 
they won’t accurately participate in the transaction balloting protocol.  
 

 
Figure 3. First round of information exchanges during transaction balloting 
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Given that the number of internode information exchanges, the entire network produces, is 
equal or greater to the lower bound, the network will converge. In figure 4 that after the 
second round of information exchanges, virtually all nodes have an accurate understanding 
of the transaction ballot.   
 

 
Figure 4. Second round of information exchanges during transaction balloting 
 
By the conclusion of the third round of information exchanges, figure 5 shows that the entire 
network has converged – i.e., all nodes in the network now has an accurate understanding of 
the transaction ballot and are ready for block creation and network wide voting protocol. 
 

 
Figure 5. Third round of information exchanges during transaction balloting 

 
In the case, that two honest nodes collide, choosing each other to exchange transaction 
information with, the node that receives the message first, ceases outbound information 
exchange during the transaction balloting protocol. 
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7.4 Network Wide Voting 
 
In most consensus protocols, nodes exchange messages asserting statements about the state 
of the network to other nodes. Leveraging public keys as the basis for naming conventions 
used for nodes and where nodes are required to digitally sign internode messages, we assume 
that such statement assertions cannot be forged. In the Proof of Majority consensus model, 
when a node receives a set of statement assertions from other nodes that can form a majority 
(50%+1), it assumes no properly functioning node (“an honest node”) will ever contradict that 
statement. To permit progress in an environment of node failures and/or dishonest nodes, a 
node is permitted to use its own assertion as part of the majority when arriving at a majority 
decision. Characterized more formally: 
 
Definition (majority consensus). A majority consensus is a pair 〈𝑉, 𝑀〉 comprising a set of nodes 
𝑉 and a majority function 𝑀 ∶  𝑉 

 
→ 2ଶೇ

 \ {∅} specifying one or more majority sets for each 
node, where node belongs to all of its own majority sets and acts as a tie breaker – i.e.,  ∀𝜐 ∈
𝑉, ∀𝘲 ∈ 𝑀(𝜐), 𝜐 ∈ 𝘲. 
 
Definition (majority). A set of nodes 𝑈 ⊆ 𝑉 in the majority consensus 〈𝑉, 𝑀〉 is a majority 
𝑖𝑓𝑓 𝑈 ≠  ∅ and 𝑈 contains a majority set for each member – i.e., ∀𝜐 ∈ 𝑈, ∃𝘲 ∈ 𝑀(𝜐) such 
that 𝘲 ⊆ 𝑈. 
 
A majority consensus is achieved when a set of nodes, in the network of nodes, has been 
convinced that one specific statement, being asserted by the network from among the set of 
statements being asserted, is the correct statement, and that set of nodes convinced of that 
one specific statement’s correctness is the majority of the nodes in the network. Traditionally, 
a Byzantine consensus of this type requires that all nodes in a network accept the same 
statement as correct, therefore requiring that all nodes in the network be known and can be 
polled to determine which statement each node accepted as correct. Polling must be done by 
a centralized authority, in this case, and all nodes must be known prior to polling. This 
precludes open membership in the network and it precludes decentralized control. To allow 
for open membership and decentralized control, Proof of Majority leverages the replication 
algorithm commonly known as Practical Byzantine Fault Tolerance (“PBFT”) [10], wherein the 
replication system is typically composed of 3𝑓 + 1 nodes, any 2𝑓 + 1 of which asserting the 
same statement as correct, constitutes a majority; where 𝑓 is the maximum number of 
Byzantine failures the system can survive before corruption occurs. Byzantine failures in Proof 
of Majority are nodes in the network acting intentionally or unintentionally to corrupt the 
network wide accepted statement (known as “dishonest nodes”). The fundamental 
innovation, beyond the PBFT, of the majority consensus model, is that each node 𝜐 is allowed 
to choose which statement it believes is correct from the set of statements 𝑀. 𝜐/ being 
asserted by the network. Thus, network wide majorities are arrived at from individual 
decisions made by each node. It is assumed in the majority consensus model that no individual 
node has a complete knowledge of all the nodes in the network, unlike the requirement in 
the traditional PBFT system, yet network wide consensus is still possible. 
 
Consider the eight-node peer group in Figure 6, where each node is asserting a statement for 
consideration of correctness. Lines represent peer-to-peer connections in the peer group, 
through which messages reflecting a given node’s assertion is transmitted to other nodes. 
Honest nodes {𝜐ଵ, 𝜐ଶ, 𝜐ଷ, 𝜐ସ, 𝜐଻, 𝜐଼} are asserting a correct statement about the network state, 
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while dishonest nodes {𝜐ହ, 𝜐଺} are not. Independently, the honest nodes will still arrive at a 
correct statement regarding the network state. Thus, the majority of the network will reflect 
an accurate statement of the network state, without each node arriving at a decision of 
accuracy and then having to transmit that decision to the other nodes. 
 

 
Figure 6. Node 𝜐ଵ 𝑎rrives a majority consensus despite dishonest nodes {𝜐ହ, 𝜐଺} 
 
In practice, the statement about the state of the network is reflected in the block being 
created during any given epoch. Nodes create blocks once an epoch from the transaction 
ballot arrived at using the transaction balloting protocol during the given epoch. The hash of 
the created block is then exchanged only with connected peers – i.e., there is no gossiping of 
the block nor an exchange of the block preceding the vote. Each node determines the majority 
consensus of the blocks created by its peers using only the hash. Once the node has arrived 
at majority consensus, the winning hash is compared to the hash of the block it created. If it 
matches then it has the winning block. If it does not match, then it asks the first node that it 
received the winning hash from for its block. Once validated, that block is now the node’s new 
block and is added to its blockchain. If the received block is not valid, then it asks the second 
node that it received the winning hash from for its block and so on, until it receives a valid 
block. If it never receives a valid block, it keeps its block and a potential fork occurs that will 
eventually be abandoned. 
 
A majority consensus is achieved network wide at each epoch. Each node in the network will 
maintain entries in a hashvotes queue, such that the queue contains one and only one hash 
for a connected node representing the block that node created during the given epoch. The 
hashvotes queue also includes a descriptor for the block creator and a timestamp. Each node 
in the network, determines a majority consensus once during a given epoch, using the 
following schemas centered on a push approach: 
 

Node 𝑛 performs a single block hash ℎ unidirectional exchange with each of its 
connected peers 𝑝: 
 
01. Add the ℎ for its own block to the hashvotes queue 
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02. Select 𝑝 as complete list of the connected active peers for 𝑛 that are not in the 
suspectednode queue and not in the timeblocked queue 

03. Package a buffer 𝑏 with ℎ 
04. Send 𝑏 to 𝑝 
05. Set processing block flag 𝑓ଵ to 0 
06. Set the retrieving block flag 𝑓ଶ  to 0 
    
 
Node 𝑛 is receiving a buffer 𝑏 containing hash ℎ from another node 𝑝: 

 
01. If 𝑝 is not in the suspectednode queue and not in the timeblocked queue, then  

a. If 𝑝 is not in the hashvotes queue, then add 𝑝 and ℎ to the hashvotes queue 
b. If hashvotes queue is complete, then 

i. Tally the number of different hash values contained in the hashvotes 
queue 

ii. If there is a tie, tally again skipping the hash value entry for node 𝑛 
iii. If there is a tie, select the entry for the tied hash value that was 

received first 
iv. If the winning hash value is equal the hash value for the block in node 

𝑛, then node 𝑛 has a valid block to be processed: 
1. Add the first node descriptor of the winning set of hash 

values to the timeblocked queue 
2. Set processing block flag 𝑓ଵ to 1 

02. If the processing block flag 𝑓ଵ is set to 0, then set the retrieving block flag 𝑓ଶ to 1 
 
 

Node 𝑛 has a retrieving block flag 𝑓ଶ set to 1: 
 

01. Iterate through the winning peers 𝑤, until a block is received: 
a. If the winning peers 𝑤 has been exhausted without a valid block, then 

i. Set processing block flag 𝑓ଵ to 1 
ii. Set the retrieving block flag 𝑓ଶ to 0 

b. If the block has been received and it is not valid, then 
i. Add the node 𝑤 descriptor to the suspectednode queue 

ii. Set processing block flag 𝑓ଵ to 1 
iii. Set the retrieving block flag 𝑓ଶ to 0 

c. If the block has been received and it is valid, then 
i. Replace the block from node 𝑛 with the retrieved block 

ii. Add the first node descriptor of the winning set of hash values to the 
timeblocked queue 

iii. Set processing block flag 𝑓ଵ to 1 
iv. Set the retrieving block flag 𝑓ଶ to 0 

d. Package a buffer 𝑏 with a block retrieval request 
e. Send 𝑏 to 𝑤 

 
 
Node 𝑛 has a processing block flag 𝑓ଵ set to 1: 
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01. Process the nodes block, as follows: 
a. Establish a new timestamp for the block 
b. Calculate a new hash for the block 
c. Add the block to the blockchain 

  
The key to the network wide voting protocol is that all nodes start with the same transaction 
ballot. Assuming that the transaction ballot protocol has created a convergent network during 
the current epoch, then each node participating in the epoch will reach the same conclusion 
in this deterministic network. Because the network has been shown earlier in this paper to 
reach a convergence with a probability only approaching 1 but not guaranteed to be 1, it can 
assumed that there will exists nodes on the network with a transaction ballot that differs from 
the rest of the network. These nodes will deterministically create blocks that though 
accurately represent the transactions in their transaction ballot, don’t participate in the 
consensus that will be arrived at by the majority of nodes. These nodes are not dishonest and 
based on the schemas above, these nodes will still add the block elected by the rest of the 
network to their blockchains, assuming that a majority of their connected peers are honest 
and have started with the complete transaction ballot. If the majority of their connect peers 
are dishonest, a fork will occur that will eventually be abandoned. 
 
Winning hashes are not gossiped among nodes, primarily to prevent certain attack vectors 
particularly that of dishonest nodes flooding the network with invalid hashes. As a result, 
nodes are left to elect blocks for the blockchain based on a majority voting consensus rather 
than an externally disseminated vote that can’t otherwise be validated in a decentralized 
network.  
 
Proof of Majority is at its core a probabilistic consensus, where each epoch introduces more 
certainty over previous blocks, eventually reaching enough certainty that the likelihood of a 
different history being adopted by the network is sufficiently small. A block is committed if 
the majority of the nodes add their weight onto the blockchain that the block belongs to. 
Although it has been shown earlier in this paper that this model will produce a consensus and 
a block will be elected to the blockchain in a fault-tolerant manner, the questions of safety 
and liveness are still open. 
 
The Fischer Lynch Paterson impossibility result [11] states that a deterministic asynchronous 
consensus system can have at most two of the following three properties:  
 
01. Safety; results are valid and identical at all nodes 
02. Liveness or guaranteed termination; nodes that don’t fail always produce a result 
03. Fault tolerance; the system can survive the failure of one node at any point 
 
This is a proven result. Any distributed consensus system must sacrifice one of these 
properties in order to have perfection of the two properties, if it operates in a deterministic 
manner and is fully asynchronous. However, there are varying degrees of each that can be 
attributed to a specific system. The realistic goal, then, is to achieve near perfection, but not 
perfection, in each of these areas.  
    
It has been proven that to tolerate 𝑓 dishonest nodes, you need 2𝑓 + 1 honest nodes in a 
given network [10][12]. It is not possible for an asynchronous system to provide both safety 
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and liveness with more than this number of dishonest nodes. As a result, ensuring that the 
network has 2𝑓 + 1 is the first step – i.e., at any point in time within the network, there must 
be more honest nodes, that will remain honest sufficiently long, than there are dishonest 
nodes. Assuming the network can achieve and maintain this ratio, complete tolerance to fault 
can be approached. Because of the same protocols that allow the network to approach near 
complete tolerance to fault, information sharing among nodes will also be complete with a 
probability approaching 1. Informally speaking, the protocols introduced in this paper favor 
safety and fault tolerance over liveness. However, liveness is not abandoned in this model. 
Through the use of epochs nodes have a defined window of time, in which to complete their 
work or move on to new work in a new epoch. Assuming nodes are not deadlocked internally, 
nodes are effectively guaranteed to produce a result or terminate processing – i.e., node 
interactions won’t cause deadlocks, only failures internal to the node cause a node to fail, 
thus nodes should receive epoch related network identifiers through regular internode 
messages unless they have failed internally, and, as a result, will complete their processing 
and move on to processing related to the new epoch. Internode communications are always 
bound by a timeout, where communications from the timed-out node are ignored until the 
next epoch. Either a new epoch or a timeout will prevent a pending internode deadlock, thus 
virtually ensuring liveness in the network. 
 
In the unlikely event that there is tie among winning block hash values, the nodes will select 
the first winning block ordered by hash value. This situation can occur if the network does not 
converge during the transaction balloting protocol and may result in some nodes generating 
an alternative understanding of the blockchain – i.e., a fork that the network will 
automatically handle.  

 
7.5 Forks and Abandonment 

 
In Figure 7, below, the honest nodes will arrive at and maintain a correct statement about the 
state of the network. In other words, they will have added a correct block to the blockchain. 
It is assumed that the dishonest nodes will remain dishonest and will thus maintain a 
blockchain where the last block is now inaccurate or corrupt.  

 
 Figure 7. A fork has been created by dishonest or corrupted nodes 
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This represents a fork of the blockchain or a portion of the network that is corrupt. It is further 
assumed, that dishonest nodes will continue to assert false statements about the network 
state – i.e., build corrupt blocks and assert their correctness to their peer nodes. To prevent 
network wide corruption or the adoption of incorrect statements about the network state, 
these forks must be abandoned quickly.  
 
The majority consensus model introduced in the paper, will quickly and automatically orphan 
forks created by dishonest or corrupted nodes. Because any block that, though valid, does not 
conform to the majority of valid inbound blocks from connected active peers will be ignored 
by nodes as they work to elect a new block onto the blockchain, a dishonest node can only 
succeed in corrupting nodes that elect its block. To elect its block would require that the 
majority of the node’s connected active peers also send it the same block. This would require 
that a majority of the node’s connected active peers also be dishonest or corrupted. At the 
next epoch the now corrupted node would then send a block, based on a corrupted 
blockchain, to its connected active peers, who would in turn ignore the block because it is not 
among the majority. The fork would be effectively orphaned. Therefore, a dishonest node 
would have to collude with a number of other dishonest nodes sufficient to overrun the 
network – i.e., dishonest nodes would have to represent more than half of the network. 
Processing and communication protocols in this consensus model prevent this.  
 
A node that has become corrupted is not removed from the network. Instead, it will be placed 
on suspectednode queues in those nodes it is connected to and will be ignored for a certain 
block height. Eventually, the corrupted node will be given a chance to re-enter active 
communications with its connected active peers. As it re-enters active communications, it will 
determine that its understanding of the blockchain differs from the network wide 
understanding and it will seek to synchronize. Once synchronized, it can again participate in 
epochs. Thus, attempts to corrupt honest nodes by dishonest nodes has only a short-term 
impact on the network.   
    
Because each node in the network at each epoch converges on the same set of transactions 
to process through the transaction propagation protocol, each node will produce the same 
block for propagation during the network wide voting protocol. The only variance will be 
dishonest or corrupted nodes. Thus, devoid of dishonest nodes, the network should not 
produce forks, unless convergence is not achieved during the transaction balloting protocol. 

 
7.6 Pacing Votes 

 
Nodes are allowed to propagate blocks for peer voting as long as they are not on a peer node’s 
timeblocked queue. Each node in the network tracks the first peer node that delivered a block 
that was elected onto the blockchain. That first connected node is placed into the timeblocked 
queue to prevent that connected node from sending new blocks for voting for a calculated 
number of elected blocks. Because dishonest nodes can act like honest nodes for a period of 
time before embarking on dishonest behaviors, Proof of Majority requires honest nodes that 
act quickly to abstain from block voting for a determinant period of growth in the blockchain. 
Nodes must be responsive. Based on the processing requirements this consensus model 
places on nodes, most nodes will be very responsive with timing footprints driven more by 
internode messaging timeframes than computing timeframes. As a result, it is safe to assume 
that any node, consistently electing blocks at a more rapid rate than nodes in its random peer 
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collective, is acting out-of-band – i.e., pacing that node’s block voting speed is thus prudent. 
Any pacing requirement must simply be large enough to mitigate a dishonest node from 
altering a consecutive block history. For this consensus model, an increase in blockchain 
height of 1 is a sufficient blockchain addition before allowing a node to elect another block 
onto the blockchain. 
 
Assuming that each node in the network is achieving the requisite number of connected active 
peers, the vote pacing protocol will result at most in 1/32 of the network being on a 
timelocked queue. In practice, 1/32 of network being in a timelocked queue is highly unlikely, 
as it would require that network wide the timelocked queues collectively contain only one 
instance of any given node. Because nodes, by design, will be members of many random peer 
collectives, thereby creating an unpartitioned network, this is highly unlikely to occur. In this 
paper, this probability of this is left to the reader, since 1/32 of the entire network abstaining 
from block voting at any given epoch is an acceptable trade off while mitigating attack vectors. 

 
7.7 Trusted Peers 

 
Trust related information is not broadcast to connected peers nor is it gossiped to the network 
at large. Nodes collect and maintain trust information on connected peers only and use 
heuristics domiciled at its node to collect that trust information about nodes requesting 
connection and about nodes its operates with post initial connection. This is done primarily 
to prevent dishonest nodes from passing on negative trust related information about honest 
nodes, thereby negatively impacting the network at large by causing network nodes to 
effectively suspend communications with honest connected active peers.  
 
Breaking node protocols by attempting to exchange information out-of-band, attempting to 
communicate too often, attempting to communicate too quickly or too slowly, 
communicating with inaccurate or inactive encryption keys, are all reasons why a node will 
place a connected active node on its internal suspectednode queue – i.e., if a node is not 
strictly obeying the rules of the then active protocol during any given epoch it will effectively 
be suspended and ignored by the connected node. 

 
7.8 Peer Aging 

 
Before a new node is allowed to submit blocks for a network vote and before it is allowed to 
exchange any network state related information, the node must age. Aging is marked by the 
number of blocks added to the blockchain since the node initiated a peer request with 
another node. Aging is tracked by the node receiving the peer connect request. Aging 
information is not broadcast to peer nodes nor is it gossiped to the network at large. Peer 
aging, along with suspectednode and timelocked queues are critical components of mitigating 
attack vectors. These are the primary mechanisms ensuring that dishonest nodes must work 
significantly harder than the rest of the network combined to achieve majority and propagate 
an alternative history of the blockchain. In combination with the other protocols described in 
this paper, this consensus model is hardened against attack vectors. By requiring an aging 
event to occur prior to accepting information exchange, the network effectively and 
efficiently slows new entrants from disseminating inaccurate, malicious, or otherwise 
malformed information that would otherwise unduly burden honest nodes, and thus 
compromise its honest activities. 
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Aging is calculated as a factor of blockchain height growth, where the primary goal is to slow 
node entry into the network under the assumption that the all nodes are just as likely to be 
dishonest and they are to be honest. The focal activity, among the many potentially dishonest 
activities, prevented by aging is a dishonest node attempting to overburden honest nodes 
with malicious exchanges of information – i.e., denial of service or spamming. As a result, any 
aging requirement must simply be large enough to mitigate a loss of processing power by an 
honest node due to malicious information exchanges initiated by a dishonest node. For this 
consensus model, an increase in blockchain height of 10 is sufficient.  
 

7.9 Node Synchronization 
 
Proof of Majority requires any node, whose understanding of current epoch is different from 
that being disseminated during the peer sampling protocol, to synchronize its blockchain with 
the rest of the network. Having a different understanding of the state of the network can 
happen in several ways: 
 
01. Node Churn 

 
The network is not static, instead nodes are continuously entering and exiting the 
network, a phenomenon commonly called churn. When a new node enters the network, 
it enters per the node discovery protocol. Once aged, the connected active peers provide 
the new node with the next epoch identifier. Entering nodes are never allowed to 
participate in the current epoch. This is necessary to make sure that each epoch converges 
to the average that existed at the start of the epoch. Continuously adding new nodes 
during an epoch would decrease the ability of the network to converge. There is no 
explicit mechanism for a node to exit the network. Instead, timeouts are used to 
terminate abandoned information exchanges. Terminated information exchanges, due to 
real or presumed node failures, do not adversely affect the network’s ability to converge 
at any given epoch. Thus the network is self-healing – i.e., it removes failed nodes from 
the system automatically. 
 

02. Suspectednode Queue 
 
Nodes that are not behaving per the trusted peers protocol are placed on the internal 
suspectednode queue of any connected active peer that observes related infractions. This 
information is not forwarded to any other connected active peers (including the node 
placed on the suspectednode queue) nor is it gossiped to the rest of the network. This 
prevents dishonest nodes from disrupting the network by simply forwarding or gossiping 
erroneous trust information to other nodes in the network. A node will also be placed 
onto a suspectednode queue if it either timeouts during an information exchange or if it 
delivers a block during the network wide voting protocol that does not confirm to the 
majority of blocks up for election. Because this consensus model has no means to 
determine if a node warranting placement on a suspectednode queue is dishonest or has 
been corrupted by a dishonest node, placement on a suspectednode queue does not mean 
permanent exile. Instead, a node on a suspectednode queue is ignored until the 
blockchain height grows sufficiently to obscure any malicious or erroneous information 
the node is or was attempting to exchange – i.e., all communication attempts while on a 
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suspectednode queue are ignored for a determinant number of blocks, not permanently. 
For this consensus model, an increase in blockchain height of 250 is a sufficient blockchain 
addition before allowing a node to be removed from a suspectednode queue. Because 
there is no distinction between a dishonest node and a corrupted node, this consensus 
model allows for all nodes to eventually attempt to reenter in the network and to follow 
the rules of all the network protocols – i.e., keep the network as large as possible, even if 
there is a constant mitigation of dishonest nodes. 
 

03. Timelocked Queue 
 
Nodes that are behaving per the trusted peers protocol will periodically be placed on the 
internal timelocked queue of any connected active peer in which the node was the first 
to deliver a block elected onto the blockchain during the network wide voting protocol. 
This is in adherence to the pacing votes protocol and helps to ensure that dishonest nodes 
temporarily acting honestly, don’t take advantage of their trusted peer status to attempt 
to alter the network understanding of the blockchain to one that is erroneous.  
 
Unlike nodes on the suspectednode queue, nodes on the timelocked queue are not 
ignored to prevent that node from being forced to reach a timeout state with one or more 
of its connected active peers during the epochs before it is removed from a timelocked 
queue. Although, the timelocked node is not allowed to exchange information, it will 
receive response messages reminding it that it is on a timelocked queue – i.e., while nodes 
are acting honestly they should not be penalized, certainly not in a manner that will 
increase overall network latency. 

 
In all cases, before peer nodes will respond to a node requesting blockchain information, or 
any other information set, the requesting node must first meet the requirements of the peer 
aging protocol. 
    
In the presence of majority posterior corruption, it is impossible to achieve consensus on the 
correct historical blockchain at any given epoch without an additional trust assumption – i.e., 
a centralized repository of the blockchain. Since it is undesirable to add this type of trust 
assumption into the Proof of Majority consensus model, another mechanism must be 
employed wherein the network can converge, even if the node requesting a blockchain 
history cannot. In the case where the node cannot achieve convergence with the rest of the 
network, the node’s blockchain will represent a fork from the network blockchain and the 
node will quickly find itself on one or more suspectednode queues; thereby effectively being 
eliminated from information exchanges with connected peers until such time as it can 
converge with the rest of the network relative to the network wide understanding of the 
correct blockchain. 
 
To retrieve the current blockchain, the requesting node sends a request message to each of 
its connected active peers. The node will receive chains of hashes from its connected peers 
representing the blockchain that is understood by the connected peer. The node will then 
verify the chain and reject it if it is found to be invalid. If a received chain is valid but deviates 
from a node's current chain too far in the past, such a chain is not punctual and will be rejected 
– i.e., if the chain deviates 40 blocks prior to the current block height. If a received chain is 
valid but deviates from a node's current chain too far in the future, such a chain will be 
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rejected – i.e., if the block height minus the height of the blockchain the node understood is 
more than a 20% deviation from the projected blockchain height based on the time elapsed 
between the then current time and the timestamp of the last block on the blockchain the 
node has a current understanding of. A node always chooses the longest chain among all the 
chains that it did not reject, by computing the longest valid chain that is a prefix to the majority 
of those chains and then by finding the longest chain in that list that contains the prefix chain. 
If this is the network start then the genesis block is the blockchain. 
 
In this way, nodes joining or rejoining the network after a short or long period away from the 
network, can achieve convergence with the network regarding the correct understanding of 
the blockchain. If the node cannot, due to the presence of majority posterior corruption, the 
node will not corrupt the rest of the network and instead will find itself effectively isolated 
from information exchanges until such time as it can achieve convergence with the rest of the 
network – i.e., this is a self-healing decentralized network. 
 

7.10 Node Startup 
 
By design, the nodes in the network are interconnected to form a random graph. A node 
attempting to enter the network first queries a set of DNS servers run by volunteer operators, 
which return a random set of bootstrap nodes that are currently active in the network. The 
node then sends connection requests to these active nodes and waits to meet the 
requirements established by the peer aging protocol. Once the node has met these 
requirements, the node is allowed to query active nodes for the network’s current 
understanding of the blockchain through the node synchronization protocol. It also 
establishes its first randompeers queue via the peer sampling protocol, from which it 
establishes the requisite number 𝑐 of connected peers. To virtually ensure network 
convergence during gossip based protocols, 𝑐 is set to 32. Each node attempts to keep a 
minimum number of connections 𝑐 to other active nodes open at all times. Should the number 
of open connections drop below 𝑐, the node will randomly select an address from its 
randompeers queue and attempt to establish a connection.  If incoming connection requests 
would otherwise exceed number of requisite open connections, the connections are not 
abandoned – i.e., node can have more than 𝑐 connections, but strive to have at least 𝑐 
connections. A node’s total number of open connections is therefore likely to be higher for 
nodes that also accept incoming connections – i.e., not all nodes accept incoming connections 
as they may be behind firewalls or network address translations.  
 
Partitions in the network connection graph are not actively detected and if they occur the 
partitions will continue operating independently. This is certainly not desirable, from a 
liveness point of view, and will cause the network wide understanding of the current state of 
the blockchain to diverge, creating more than one parallel and possibly incompatible 
transaction histories. It is therefore of paramount importance that network partitions are 
detected. However, without an additional trust element, typically achieved through 
centralized oversight, this is not easily accomplished. Since this is highly undesirable, it is of 
equally paramount importance that each node works to maintain its requisite number of 
connected active peers. 
 
There is no explicit way to leave the network. The addresses of nodes that leave the network 
may linger for a small period before the active nodes purge them from their known addresses 
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set and stop sending them in answer to peer sampling protocol requests. Message exchange 
timeouts are the primary method employed to purge nodes that have left the network. 
 

7.11 Node Footprint 
 
Nodes in the network are very light weight with an extremely low processing footprint and a 
very small memory footprint. Information exchanges are never much larger than the size of a 
single block and movement frequency is naturally throttled at each epoch. Consensus building 
during the network wide voting protocol requires block hashes to be exchanged, not blocks. 
Hardware running nodes can be a fraction of the processing power required to run nodes in 
consensus models that require heightened levels of difficulty for node selection, because 
simple and quick hashing is all that is required. Network energy is at its peek during the 
transaction balloting protocol when the network converges on the queue of unconfirmed 
transactions to be included in the next elected block; during other protocols, network energy 
remains very low. During this peek energy state, the network is simply gossiping transactions, 
which it has been found that 96% of the transactions will be smaller than 1kB [13]. Thus, the 
peek energy state of the network is substantially smaller than that of other consensus models.  
 
Node energy states peek during blockchain synchronization, which under nominal network 
conditions occurs once during node startup. This consensus model makes a distinction 
between a full node and thin node only relative to the amount of information maintained at 
the node and that is directly related to the node’s understanding of the blockchain – i.e., full 
nodes maintain the full blocks, while thin nodes maintain block and transaction header 
information. Both full nodes and thin nodes, however, participate in block creation and the 
network wide voting protocol, where thin nodes temporarily maintain full transaction 
information for any unconfirmed transactions gossiped during the transaction balloting 
protocol – i.e., once a block is elected, the thin nodes will have abandoned the full block and 
full transaction information set in favor of block headers and transaction headers. This means 
that the download and storage requirements of thin nodes scales linearly with the amount 
time since the network start. For validation of transactions and mitigation of certain attack 
vectors, there exists two different trust models between full nodes and thin nodes. Full nodes 
can make transaction verifications against the entire blockchain, while thin nodes must 
instead link transactions to a block in the blockchain, ensuring that the network accepted the 
transaction, but without any ability to directly verify any given transaction – i.e., thin nodes 
rely on the network’s self-healing characteristics to mitigate attack vectors that they cannot 
directly address.  
 
Thin nodes are connected to the rest of the network under the same protocols full nodes 
follow. Thus, they are connected to many active peers, instead of only one active server node, 
as with many other consensus models. This prevents certain attack vectors that plague thin 
nodes in other consensus models and helps to ensure that thin nodes fully participate in the 
network and are thus entitled to their share of the network’s mining rewards. 
 
Because Proof of Majority has such low processing and memory requirements, nodes can be 
run on handheld devices – i.e., smart phones have the necessary processing power, memory, 
and bandwidth to operate within the network in a manner in which they can earn mining 
rewards. 
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7.12 Network Epochs 
 
Proof of Majority assumes that epochs proceed in lock step at all nodes in the network. In a 
large-scale distributed system, this assumption cannot typically be satisfied due to the 
unpredictability of message delays and the different drift rates of local clocks. Given an epoch 
𝑗, let 𝑇𝑗 be the time interval from when the first node starts participating in epoch 𝑗 to when 
the last node starts participating in the same epoch. In a completely asynchronous network 
the length of this interval would increase without bound given the different drift rates of local 
clocks and the fact that a new node joining the network obtains the next epoch identifier from 
an existing node, incurring a message delay. To avoid this problem, when a node participating 
in epoch 𝑖 receives an exchange message tagged with epoch identifier 𝑗 such that 𝑗 >  𝑖, the 
node must stop participating in epoch 𝑖 and instead starts participating in epoch 𝑗. However, 
because the majority consensus model saves network energy by allowing each node to build 
its blockchain devoid of block gossiping, the node that stopped participating in epoch 𝑖 would 
produce a blockchain of insufficient height. Therefore, nodes must complete the epoch 𝑖 
before moving to epoch 𝑗, in this scenario. Intuitively, we can assume then that the network, 
as a whole, will complete a specific epoch only when the slowest node in the network 
completes that specific epoch. This is an undesirable limitation on overall network 
throughput. The average pace of epochs must be more deterministic than that of the slowest 
node at a given epoch. A timeout on message exchange between a node and a given 
connected peer is all that is required to set an average pace for epochs. To avoid reducing the 
overall number of participating honest network nodes, that timeout must be larger than or 
equal to 𝑇𝑗. Since this consensus model leverages a push/pull communication schema, which 
propagates messages super-exponentially, and if we assume that each message arrives within 
a prescribed timeout during all communications, we can obtain a logarithmic bound on 𝑇𝑗 for 
each epoch 𝑗. More importantly, typically many nodes will start the new epoch independently 
with a very small difference in time, so this bound can be expected to be sufficiently small, 
thus requiring an epoch length such that it is greater than or equal to 𝑇𝑗 and can be used as 
the network wide messaging timeout. 
 
The end of any given epoch is demarked by all nodes in the network completing the network 
wide voting protocol, either by being eliminated from processing due to the timeout on 
message exchange, as just discussed, or by receiving block election messages from all non-
timed out connected peers. Because this protocol requires answers or timeouts from all 
connected peers, it can be intuitively assumed that each node will complete the current epoch 
at virtually the same time within an extremely small differential of time. Because of this 
situation, this consensus model will not impose a predetermined timeframe for an epoch to 
complete in. 
 
Each node should start the next epoch immediately, to ensure the timeliest election of the 
next block onto the blockchain. The peer sampling protocol is the first step in any epoch and 
each related message exchange contains the epoch number of the current epoch – i.e., the 
height of the blockchain. If a node receives a peer sampling protocol message containing an 
epoch number that does not match the height of the blockchain it has on record, then the 
node cannot participate in the current epoch and instead must synchronize its blockchain with 
the rest of the network. In doing so, the node should not attempt to synchronize its blockchain 
through message exchange with the connected peer that first reported the epoch number to 
it; the node synchronization protocol will be used in this case. 
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7.13 Network Traffic 

 
While most blockchain systems use an announcement protocol to broadcast the availability 
of information, where peers in the system then decide whether or not to ask for the 
information, Proof of Majority uses a strict push exchange or a push/pull exchange, where 
peers are expected to accept the information, as long as that information is pushed within 
the guidelines of the then active protocol during a given epoch. Announcement protocols 
have been shown to significantly increase latency times with a blockchain system [13], 
counter to the goal of the Proof of Majority consensus model, which seeks to reduce overall 
system latency times. It has been shown that for information sets less than 1kB, the roundtrip 
delay present in the announcement protocol is considerable [13]. The information added to 
the system to announce availability of a new datum, to then respond with a request for that 
new datum, and then finally to send the new datum, is considerable in ratio to the datum 
itself – i.e., the smaller the datum the higher the ratio of overhead to information. Coupled 
with the three-fold increase in the number of internode exchanges to accomplish the datum 
transfer, there is cost savings to the system that can be represented, as follows, by simply 
sending datums directly: 
 
Definition (announcement). An announcement message has a predefined nonvariant data size 
𝑑𝑎 that can be expressed in bytes. In a typical blockchain network, an announcement 
message is sent a peer node to inform the peer node that a transaction exists. 
 
Definition (data request). A data request message has a predefined nonvariant data size 
𝑑𝑟 that can be expressed in bytes. In a typical blockchain network, a data request message is 
sent back to the announcing peer node to request the transaction. 
 
Definition (data send). A data send message has a variant data size 𝑑𝑠 that can be expressed 
in bytes and holds the transaction sent to a peer node. 
 
Definition (savings). The cost savings 𝑐𝑠 to the network by sending the transaction directly to 
a peer node without an announcement message and without a data request message, can be 
represented as a percentage such that 𝑐𝑠 →  (𝑑𝑎 +  𝑑𝑟)/(𝑑𝑎 +  𝑑𝑟 +  𝑑𝑠). 
 
Given expected message sizes with in the Proof of Majority consensus model, the cost savings 
percentage can be expected to be 19.35% as follows: 
 

𝑑𝑎 = 54B, 𝑑𝑟 = 54B, 𝑑𝑠 = 450B, 𝑐𝑠 →  (54 +  54)/(54 +  54 +  450)  =  19.35% 
 
Because it has been found that 96% of all transactions on a representative blockchain system 
are smaller than 1kB [13], it is safe to assume that this savings percentage will be virtually 
constant throughout the life of the network. 
 
The preceding reflects non-block information exchanges. The majority consensus model 
presented in this paper, does not require blocks to be gossiped, this prevents huge amounts 
of data from being propagated at each epoch. Instead, this consensus model is designed such 
that each node arrives at the next block on its own and waits for a peer related majority to 
emerge to elect that block onto the blockchain in a manner that ensures that the honest node 
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will have the same block network wide. If an honest node hashes a block that differs from the 
majority, then it will ask for the block from a connected active peer. During ongoing epoch 
protocols, where the network converges, nodes do not broadcast or gossip blocks. The cost 
savings on network traffic over the typical blockchain consensus model, therefore approaches 
100%. 
   
It has been shown that to achieve information saturation across the network, in a push/pull 
exchange model, requires 𝑂(𝑙𝑜𝑔 𝑙𝑜𝑔 𝑉) messages where 𝑉 is the number of connected 
nodes. This assumes that complete saturation is required for the protocol in question. This 
consensus model only requires complete saturation during the transaction balloting protocol; 
the network wide voting protocol does not require complete saturation to achieve the 
necessary network convergence. The transaction propagation protocol is a push exchange 
model that has been shown to require 𝑂(𝑙𝑜𝑔 𝑉) message to achieve complete information 
saturation across the network, where 𝑉 is the number of connected nodes. The transaction 
propagation protocol does not require complete saturation to achieve the necessary network 
convergence. Because the consensus model does not require complete saturation for all 
protocols during a given epoch, network traffic is bounded by the previous, but rarely meets 
that bound. 

 
8. Blocks 
 

Blocks on the blockchain represent a consensus among the nodes and reflect the network wide 
accepted statement about the state of the network at the time the block was added to the blockchain. 
The only mechanism for affecting change in the wallet is through the election of blocks onto the 
blockchain. 

 
8.1 Block Creation 

 
The majority consensus model presented in this paper, dictates that nodes create blocks 
devoid of a coinbase transaction and include all transactions received during the transaction 
balloting protocol. There are no fees built into any transactions and thus inclusion of any given 
transaction into a block is frictionless. Miners are not incented at the transaction level to 
mine, instead through the voting rewards protocol, miners receive compensation and are 
incented to act rationally and honestly. Blocks are also devoid of the typical bits field reflecting 
the current difficulty and are devoid of the typical nonce field – i.e., block creation is simply a 
matter of hashing the balloted transactions into a block while addressing the previous block’s 
hash. Resource requirements for block creation are very small.  
     
Nodes generate a single candidate block per epoch and propagate that block’s hash, not the 
block, during the network wide voting protocol. Information exchange is therefore 
significantly reduced compared to traditional consensus models. Because each node will 
eventually select among the candidate blocks, it receives during the network wide voting 
protocol, for election onto its understanding of the blockchain, rather than receiving a block 
via broadcasting or gossiping from the network, the node must generate a time stamp for its 
elected block that will converge across the network. Since a time stamp will be generated 
after election, there is no need for nodes to include a time stamp during block creation. 
Therefore, the time stamp field in the block header will be set to 0 seconds from 1970-01-01 
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00:00. Once a block is elected and a convergent time stamp is set in the block header, the 
electing node will rehash the block and add it to its understanding of the blockchain. 
    
When limits are imposed on block size, nodes will place the newest transactions, by 
transaction time stamp, from the transaction balloting protocol that won’t fit into the block’s 
prescribed size limit, back onto the unconfirmedtransactions queue for processing at the next 
epoch.  
 

8.2 Block Time Stamping 
 
Blocks are created and voted on within a connected peer group and although the network 
converges on the included transactions prior to block creation, blocks will not have time 
stamps that have converged. Thus, a mechanism that ensures all blocks across the various 
blockchain copies on the network, must be leveraged, if time stamps are to converge, as well. 
After block election during the network wide voting protocol, each node will establish the 
elected block’s time stamp, such that; (1) the time stamp assigned to the block is the time 
stamp of the first transaction contained in the block, (2) if the time stamp of the first 
transaction in the block is at or prior to the time stamp elected in the last epoch, then the time 
stamp for the newly elected block is the difference between the time stamp from the block 5 
epochs ago and the time stamp of the block 11 epochs ago, plus the median time stamp, in 
seconds, of the last 11 blocks. In this way, this consensus model, ensures that block time 
stamps are ordered, that under nominal operating conditions, block time stamps represent 
the first transaction in the block, and that block time stamps converge across the network. 

 
9. Voting Rewards 

 
Transaction processing in a peer-to-peer network consumes resources and node operators within the 
network should be compensated for this consumption. However, this consensus model is frictionless, 
in that migrating a transaction from an unconfirmed state to a confirmed state is devoid of a fee. Node 
operators are compensated for participating in the election of new blocks to the blockchain by 
building blocks and submitting them to their connected peer nodes for voting. Blocks do not 
themselves contain any fee related transactions either. Instead, voting participation is tracked and 
participating node operators are periodically compensated through rewards to their wallet from 
revenues generated by the entire ecosystem. 
  
Voting participation is reported on the blockchain through heartbeat transactions. Each node in the 
network tracks voting connected peers during the network wide voting protocol, by maintaining a 
participatingnodes queue of nodes that participated in a majority elected block. Each time a 
connected peer exchanges an elected hash with a node, that node increments a counter for the 
connect peer. This queue is not broadcast or otherwise gossiped to any other node. At each epoch, 
the node will uniformly randomly select a single connected peer from its internal participatingnodes 
queue, where the connected peer has a count of 2016 or more – i.e., the node must have more than 
intermittent participation during the period. The node will then place a transaction into the 
transaction balloting protocol that reflects the connect peer 𝑝 and itself 𝑣. It will then reset the 
incremented counter for 𝑝 in its participatingnodes queue – i.e., it will gossip a heartbeat transaction 
for the connect peer. As other nodes in the network receive the information during the transaction 
balloting protocol, they will validate the heartbeat transaction, such that; (1) 𝑝 is not already in the 
transaction balloting queue, where duplicates are eliminated by keeping the first transaction ordered 
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by the hash associated with 𝑣, (2) there is a heartbeat transaction for 𝑣 in the last 2016 blocks of the 
blockchain just prior to the current epoch, and (3) there is no heartbeat transaction for 𝑝 in the 
blockchain in the last 2016 blocks, just prior to the current epoch. If the blockchain is less than 2016 
blocks in height, then requirement that there is a heartbeat transaction for 𝑣 in the proceeding 2016 
blocks is waived and the threshold for required vote participation is 1 block before a heartbeat 
transaction can be placed into the transaction balloting protocol. 
 
A pro-rata distribution of a total network wide reward 𝑟 is delivered periodically based on the nodes 
who have at least one heartbeat transaction on the blockchain – i.e., any given node with 𝜑 
heartbeats, in a network of 𝜎 heartbeats, will receive a portion 𝛼 of 𝑟 for that period 𝜏 such that: 𝛼ఛ ∶
 (𝑟ఛ / 𝜎ఛ)  ∗  𝜑ఛ. As long as the cost associated with mining is less than the reward for participation, 
rational nodes will continue to participate. Further, because nodes are dependent on their selection 
by a connected peer node to report heartbeat transactions on their behalf, and this selection is 
through a uniform random selection process, nodes are further incented to establish and maintain as 
many active peer connections as possible, increasing network interconnectivity and thereby reducing 
the probability of network partitioning and certain attack vectors. Additionally, the requirement that 
nodes sponsoring heartbeat transactions must also have had a node sponsor their heartbeat 
transaction prior, mitigates the risk of dishonest nodes simply placing themselves on the network and 
propagating heartbeat transactions for each other. 

 
10. Energy and Latency 

 
At the conclusion of the epoch, all network nodes have independently established the next block in 
the blockchain containing the same set of transactions. Because there is a probability approaching 1 
that the blocks are created from the same base of transactions, we can assume that devoid of 
dishonest nodes, each node creates the same block. Further, we can assume that each node 
completed processing following the above schemas without the need to retrieve an actual block from 
a connected peer, with a probability approaching 1, as well. Therefore, network traffic was kept very 
low, while arriving at a majority consensus. Overall network energy is significantly reduced in 
comparison to typical blockchain implementations, while consensus is arrived significantly faster and 
is hardened against attack vectors. 

 
11. Attack Vectors 

 
Message gossiping is a major contributor to a network’s vulnerability to most attack vectors. It has 
the potential to increase network traffic significantly thereby increasing network energy significantly. 
Dishonest nodes cannot easily spam a network where honest nodes do not gossip. This consensus 
model does depend on certain protocols exchanging information via gossip, so certain precautions 
have to be taken to mitigate attack vectors. To increase their chances of disrupting the network, 
dishonest nodes must establish more connections with the network by increasing peer-to-peer 
connections and/or by establishing more dishonest nodes. Because of the aging requirements, trust 
requirements, and internal queues that sequester bad behavior and slow even positive behavior, in 
this consensus model, dishonest nodes are materially slowed in their efforts to establish more peer-
to-peer connections and to establish more dishonest nodes on the network. Overtime dishonest 
nodes could permeate a network, if aging were the only factor in determining trust. Therefore, acting 
like an honest node is the key to continued network inclusion. Once a node determines that a 
connected node is acting dishonestly, the dishonest node is ignored via placement on the 
suspectednode queue. There is a very low threshold for dishonesty in this consensus model. Even 
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under nominal network conditions, devoid of dishonest nodes, it has already been shown that, as 
much as, 1/32 of the entire network node base will be timelocked though these nodes are behaving 
honestly. Thus, the network is constantly throttling node participation, without hindering overall 
network productivity, to mitigate attack vectors. 
 
Aside from dishonest nodes attempting to overwhelm a network to inject illegal information, there 
are several attack vectors that a decentralized, democratized, network computer must defend 
against. Most attack vectors are successful because computing or information is not truly 
decentralized and not truly democratized. Traditional consensus models don't actually possess either 
of these qualities. Under most existing and operational consensus models, mining pools are massive 
and controlled by very few people. Though there are almost 10,000 nodes on the most popular 
blockchain today, almost no mining is done outside the 8-14 largest mining pools; this is not 
decentralization. Further, a single node wins the "lottery" or is chosen by some algorithm as the 
authority allowed to submit the next block for validation; this is not a democracy. Instead, these 
models create single points of failure and will always be open to some new attack. Further, the lack 
of traffic encryption between nodes further exacerbates the problem of mitigating attack vectors. 
Proof of Majority is truly decentralized, democratized, and all internode communications are 
encrypted – i.e., this consensus model can successfully defend against known attack vectors. 
 
Mitigation against certain attack vectors is achieved through the use of node specific queues for 
timelocking honest nodes to pace their voting rates and placing nodes suspected of dishonest 
behavior on suspectednode queues, where all traffic from such nodes is ignored – i.e., nodes acting 
honestly are throttled assuming they will one day act dishonestly, while nodes acting dishonestly are 
immediately sequestered.  

 
11.1 Double Spending 

 
The problem of double spending was addressed in the original paper by Nakamoto, but only 
theoretically. There are several scenarios that plague typical consensus models, making them 
vulnerable to double spending attacks [14] at a very low cost to the attacker. Some can be 
mitigated or, at least, detected by, establishing a longer detection period; some cannot be 
mitigated this way. Information eclipsing is the primary door to successful double spending, 
especially in fast payment solutions [15]. The Proof of Majority consensus model is not open 
to the current double spending attack vectors, in that it does not present an opportunity for 
dishonest nodes to carry out the primary vectors: 
 
01. Race Attack: Sending two conflicting transactions in rapid succession into the network. 

Because, at each epoch, this consensus model requires the network to converge on the 
queue of unconfirmed transactions to include in the next block, the network is not open 
to a single node being selected for block creation wherein the node arbitrarily selects the 
transactions it will include in the next block. Instead, all nodes create and come to 
consensus on the next block with the same total queue of unconfirmed transactions. 
Intuitively, conflicting transactions will be detected and found invalid, thus excluding the 
double spend of this type from the next block and blocks in the future. 
 

02. Finney Attack: Pre-mine one transaction into a block and spend the same coins before 
releasing the block to invalidate that transaction. This vector requires a consensus model 
in which a single node is selected for block creation. That node can introduce a block onto 
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the blockchain that then invalidates the original spend. This is not the case with the Proof 
of Majority consensus model – i.e., all nodes create the next block and come to consensus 
electing that block into the blockchain, so no single node has enough power to affect this 
type of double spend. 

 
03. 51% Attack: Usurp over 50% of the total computing power of the network to control 

which transactions appear in blocks including the ability to reverse transactions. Although 
this attack is possible, it has been shown that it is highly improbable in the Proof of 
Majority consensus model.  

 
The double spend attack vectors that currently exist are not affective in this consensus model 
because they are dependent on a single node being selected for block creation during any 
given network epoch. This consensus model requires all nodes to participate in block creation 
and, thus, it is not open to double spend attack vectors. 

 
11.2 Intentional Wallet Address Collision 

 
It is possible that two different public keys will yield the same address. If such an address 
contains value, it would be possible for a dishonest node to redeem value from the associated 
wallet. For the redemption to succeed, the dishonest node would need to find a private/public 
keypair such that the SHA3 256 of the public key would be equal to the Ripemd-160 preimage 
of 160-bit hash. Since SHA3 256 offers 128 bits of security, it’s mathematically improbable for 
a single SHA3 256 collision to be found. 
 

11.3 Sybil Attack 
 
In decentralized network where inclusion in peer groups is open, a Sybil attack is possible. The 
possibility for a node to inject itself into the network and subvert a positive reputation by 
forging its identity to match that of a node that exited the network with a positive reputation, 
is an attack vector that must be mitigated. Encrypting information exchanges between 
connected peers helps to mitigate this risk, thereby requiring a dishonest node to somehow 
acquire a private encryption key held by the node it is impersonating. The push/pull 
information exchange protocols further mitigate this vector, by leveraging the fact that 
although it is easy to spoof an IP return address in an IP packet, it is not easy to subvert routing 
and receive messages on a spoofed IP address. A dishonest node is thus limited by the number 
of public IP addresses that it actually has control over. Proof of Majority also requires that 
peers use TLS connections with endpoints identified by IP address, thereby further reducing 
the risk of this vector’s success. 
 

11.4 Denial of Service and Spamming 
 
The goal of the dishonest node or nodes can be to increase network energy to a point that 
the network slows and cannot efficiently, or at all, cycle through its protocols or epochs, 
thereby effectively crippling the network. This consensus model mitigates this vector by 
throttling network energy usage during all protocols. All nodes have a very low threshold for 
behavior that does not adhere to stated protocols and will sequester any node breaking this 
threshold. Nodes deemed to be misbehaving are immediately placed onto an internal 
suspectednode queue, where after they are completely ignored – i.e., any attempt to 
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exchange information is rejected, thus they are unable to raise network energy. Any deviation 
from protocol is considered bad behavior; too many messages, out-of-band messages, 
sending invalid data, non-responsiveness, and the like, are all causes for sequestering at the 
first instance of the bad behavior. Using their randompeers queue, nodes initiated outbound 
communications with at most 15 random connected active peers during gossip based 
protocols during any given epoch, and during each epoch, nodes update their randompeers 
queue. So, at each epoch, nodes have new connected active peers to gossip with. Thus, nodes 
can quickly recognize out-of-band exchange attempts during any given protocol, resulting on 
the out-of-band node being placed onto the suspectednode queue – i.e., the nodes have many 
different ways to quickly determine if a node is misbehaving and then to subsequently ignore 
them. 

 
11.5 Node Corruption 

 
Dishonest nodes can slowly work to corrupt honest nodes by getting them to accept illegal or 
erroneous information and thereby corrupt the honest node relative to future epoch 
participation. Rather than overwhelming the entire network, dishonest nodes can simply 
overwhelm an honest node by establishing enough connections to represent a majority for 
the honest node. As such, the honest node can now be convinced that an illegal or erroneous 
network state is accurate. Several of the consensus protocols are vulnerable to this type of 
attack vector and in a decentralized network where trust is distributed, the honest node will 
have no way to prevent this vector nor would it even be aware that it is under attack. As a 
result, the honest node will now undertake subsequent protocols in an epoch with illegal or 
erroneous information – i.e., the honest node is now acting dishonestly without intent. 
   
For this to be an effective attack, the corrupted node, now acting dishonestly, must have 
means to spread the illegal or erroneous information or the erroneous information that 
succeeds it. To do this, it must connect with another honest node in the network. It’s at this 
point that the corrupted node will be discovered by the honest node it attempted to exchange 
the erroneous information with. Because the connected peer is not overwhelmed by 
dishonest nodes, it will readily determine the misbehavior and place the corrupted node onto 
its suspectednode queue and ignore it – i.e., the corrupted node is quickly sequestered. At 
best, the corrupted node will create a fork in the network understanding of the blockchain; a 
fork that has already been shown will be quickly abandoned.  
    
Nodes placed on a suspectednode queue are not eliminated from the network. Instead, they 
are temporarily sequestered from the network for a certain number of blocks. While 
throttling misbehavior to extremely low levels, levels that the network can easily absorb, it 
allows corrupted nodes to re-enter the network as well behaved honest nodes at a later time. 
Thus, dishonest nodes cannot slowly corrupt the entire network by systematically attacking 
honest nodes throughout the network over time, expecting the network to eliminate those 
nodes. Proof of Majority creates a self-healing network. 

 
11.6 Honest Nodes Turning Dishonest 

 
Nodes acting honestly for a period, gaining trust, and then acting dishonestly, is an attack 
vector that must be mitigated. In the majority consensus mode introduced in this paper, these 
nodes will be quickly categorized as dishonest and placed on a suspectednode queue and 
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ignored. To reduce the attractiveness of this attack vectors, this consensus model paces 
honest nodes via the pacing votes protocol.  
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